skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vong, Wai Keen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract State-of-the-art deep-learning systems use decision rules that are challenging for humans to model. Explainable AI (XAI) attempts to improve human understanding but rarely accounts for how people typically reason about unfamiliar agents. We propose explicitly modelling the human explainee via Bayesian teaching, which evaluates explanations by how much they shift explainees’ inferences toward a desired goal. We assess Bayesian teaching in a binary image classification task across a variety of contexts. Absent intervention, participants predict that the AI’s classifications will match their own, but explanations generated by Bayesian teaching improve their ability to predict the AI’s judgements by moving them away from this prior belief. Bayesian teaching further allows each case to be broken down into sub-examples (here saliency maps). These sub-examples complement whole examples by improving error detection for familiar categories, whereas whole examples help predict correct AI judgements of unfamiliar cases. 
    more » « less
  2. Abstract Traditionally, learning has been modeled as passively obtaining information or actively exploring the environment. Recent research has introduced models of learning from teachers that involve reasoning about why they have selected particular evidence. We introduce a computational framework that takes a critical step toward unifying active learning and teaching by recognizing that meta‐reasoning underlying reasoning about others can be applied to reasoning about oneself. The resulting Self‐Teaching model captures much of the behavior of information‐gain‐based active learning with elements of hypothesis‐testing‐based active learning and can thus be considered as a formalization of active learning within the broader teaching framework. We present simulation experiments that characterize the behavior of the model within three simple and well‐investigated learning problems. We conclude by discussing such theory‐of‐mind‐based learning in the context of core cognition and cognitive development. 
    more » « less